// SPDX-License-Identifier: BSD-4-Clause /* * ABDK Math Quad Smart Contract Library. Copyright © 2019 by ABDK Consulting. * Author: Mikhail Vladimirov */ pragma solidity ^0.8.0; /** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */ library ABDKMathQuad { /* * 0. */ bytes16 private constant POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt (int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16 (0); else { // We rely on overflow behavior here uint256 result = uint256 (x > 0 ? x : -x); uint256 msb = mostSignificantBit (result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16383 + msb << 112; if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16 (uint128 (result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt (bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = uint128 (x) >> 112 & 0x7FFF; require (exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128 (x) >= 0x80000000000000000000000000000000) { // Negative require (result <= 0x8000000000000000000000000000000000000000000000000000000000000000); return -int256 (result); // We rely on overflow behavior here } else { require (result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int256 (result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt (uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16 (0); else { uint256 result = x; uint256 msb = mostSignificantBit (result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16383 + msb << 112; return bytes16 (uint128 (result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt (bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = uint128 (x) >> 112 & 0x7FFF; if (exponent < 16383) return 0; // Underflow require (uint128 (x) < 0x80000000000000000000000000000000); // Negative require (exponent <= 16638); // Overflow uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128 (int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16 (0); else { // We rely on overflow behavior here uint256 result = uint256 (x > 0 ? x : -x); uint256 msb = mostSignificantBit (result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16255 + msb << 112; if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16 (uint128 (result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128 (bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = uint128 (x) >> 112 & 0x7FFF; require (exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128 (x) >= 0x80000000000000000000000000000000) { // Negative require (result <= 0x8000000000000000000000000000000000000000000000000000000000000000); return -int256 (result); // We rely on overflow behavior here } else { require (result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int256 (result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64 (int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16 (0); else { // We rely on overflow behavior here uint256 result = uint128 (x > 0 ? x : -x); uint256 msb = mostSignificantBit (result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16319 + msb << 112; if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16 (uint128 (result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64 (bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = uint128 (x) >> 112 & 0x7FFF; require (exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128 (x) >= 0x80000000000000000000000000000000) { // Negative require (result <= 0x80000000000000000000000000000000); return -int128 (int256 (result)); // We rely on overflow behavior here } else { require (result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128 (int256 (result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple (bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = uint256 (x) >> 236 & 0x7FFFF; uint256 significand = uint256 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? NEGATIVE_INFINITY : POSITIVE_INFINITY; } if (exponent > 278526) return negative ? NEGATIVE_INFINITY : POSITIVE_INFINITY; else if (exponent < 245649) return negative ? NEGATIVE_ZERO : POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> 245885 - exponent; exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128 (significand | exponent << 112); if (negative) result |= 0x80000000000000000000000000000000; return bytes16 (result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple (bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = uint128 (x) >> 112 & 0x7FFF; uint256 result = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit (result); result = result << 236 - msb & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128 (x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32 (result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble (bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = uint64 (x) >> 52 & 0x7FF; uint256 result = uint64 (x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit (result); result = result << 112 - msb & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16 (uint128 (result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble (bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128 (x) >= 0x80000000000000000000000000000000; uint256 exponent = uint128 (x) >> 112 & 0x7FFF; uint256 significand = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8 (0xFFF0000000000000) : // -Infinity bytes8 (0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8 (0xFFF0000000000000) : // -Infinity bytes8 (0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8 (0x8000000000000000) : // -0 bytes8 (0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> 15421 - exponent; exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64 (significand | exponent << 52); if (negative) result |= 0x8000000000000000; return bytes8 (result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN (bytes16 x) internal pure returns (bool) { unchecked { return uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity (bytes16 x) internal pure returns (bool) { unchecked { return uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign (bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require (absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128 (x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp (bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require (absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128 (y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require (absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require (x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128 (x) >= 0x80000000000000000000000000000000; bool negativeY = uint128 (y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8 (1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8 (1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq (bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add (bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = uint128 (x) >> 112 & 0x7FFF; uint256 yExponent = uint128 (y) >> 112 & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128 (x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128 (y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128 (y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == NEGATIVE_ZERO ? POSITIVE_ZERO : y; else if (ySignifier == 0) return x == NEGATIVE_ZERO ? POSITIVE_ZERO : x; else { int256 delta = int256 (xExponent) - int256 (yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256 (delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256 (-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? NEGATIVE_INFINITY : POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16 (uint128 ( (xSign ? 0x80000000000000000000000000000000 : 0) | (xExponent << 112) | xSignifier)); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = (ySignifier - 1 >> uint256 (delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = (xSignifier - 1 >> uint256 (-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return POSITIVE_ZERO; uint256 msb = mostSignificantBit (xSignifier); if (msb == 113) { xSignifier = xSignifier >> 1 & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = xSignifier << shift & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? NEGATIVE_INFINITY : POSITIVE_INFINITY; else return bytes16 (uint128 ( (xSign ? 0x80000000000000000000000000000000 : 0) | (xExponent << 112) | xSignifier)); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub (bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add (x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul (bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = uint128 (x) >> 112 & 0x7FFF; uint256 yExponent = uint128 (y) >> 112 & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ y & 0x80000000000000000000000000000000; else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ y & 0x80000000000000000000000000000000; } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ x & 0x80000000000000000000000000000000; } else { uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128 (y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? NEGATIVE_ZERO : POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit (xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16 (uint128 (uint128 ((x ^ y) & 0x80000000000000000000000000000000) | xExponent << 112 | xSignifier)); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div (bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = uint128 (x) >> 112 & 0x7FFF; uint256 yExponent = uint128 (y) >> 112 & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ y & 0x80000000000000000000000000000000; } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return POSITIVE_ZERO | (x ^ y) & 0x80000000000000000000000000000000; } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return POSITIVE_INFINITY | (x ^ y) & 0x80000000000000000000000000000000; } else { uint256 ySignifier = uint128 (y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint shift = 226 - mostSignificantBit (xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? NEGATIVE_ZERO : POSITIVE_ZERO; assert (xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit (xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16 (uint128 (uint128 ((x ^ y) & 0x80000000000000000000000000000000) | xExponent << 112 | xSignifier)); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg (bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs (bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt (bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128 (x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = uint128 (x) >> 112 & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = xExponent + 16383 >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit (xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= shift - 112 >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit (xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= shift - 112 >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16 (uint128 (xExponent << 112 | r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF)); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2 (bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128 (x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return POSITIVE_ZERO; else { uint256 xExponent = uint128 (x) >> 112 & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit (xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit (resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while (resultSignifier < 0x10000000000000000000000000000) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16 (uint128 ((resultNegative ? 0x80000000000000000000000000000000 : 0) | resultExponent << 112 | resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF)); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln (bytes16 x) internal pure returns (bytes16) { unchecked { return mul (log_2 (x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2 (bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128 (x) > 0x80000000000000000000000000000000; uint256 xExponent = uint128 (x) >> 112 & 0x7FFF; uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? POSITIVE_ZERO : POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if (xNegative && xSignifier > 0x406E00000000000000000000000000000000) return POSITIVE_ZERO; if (!xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) return POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10B5586CF9890F6298B92B71842A98363 >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725 >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000162E525EE054754457D5995292026 >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000162E43F4F831060E02D839A9D16D >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000B1721BCFC99D9F890EA06911763 >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000162E430E5A18F6119E3C02282A5 >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06 >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9 >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000B17217F80F4EF5AADDA45554 >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000162E42FEFB2FED257559BDAA >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000162E42FEFA494F1478FDE05 >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000B17217F7D20CF927C8E94C >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000002C5C85FDF477B662B26945 >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000162E42FEFA3AE53369388C >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000B17217F7D1D351A389D40 >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000162E42FEFA39FE95583C2 >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1 >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000002C5C85FDF473E242EA38 >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000162E42FEFA39F02B772C >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000002C5C85FDF473DEA871F >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000162E42FEFA39EF44D91 >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000B17217F7D1CF79E949 >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000058B90BFBE8E7BCE544 >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000162E42FEFA39EF366F >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000B17217F7D1CF79AFA >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000002C5C85FDF473DE6B2 >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000162E42FEFA39EF358 >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000B17217F7D1CF79AB >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5 >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000002C5C85FDF473DE6A >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000162E42FEFA39EF34 >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000B17217F7D1CF799 >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000058B90BFBE8E7BCC >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000002C5C85FDF473DE5 >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000162E42FEFA39EF2 >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000B17217F7D1CF78 >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000058B90BFBE8E7BB >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000002C5C85FDF473DD >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000162E42FEFA39EE >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000B17217F7D1CF6 >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000058B90BFBE8E7A >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000002C5C85FDF473C >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000162E42FEFA39D >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000B17217F7D1CE >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000058B90BFBE8E6 >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000002C5C85FDF472 >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000162E42FEFA38 >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000B17217F7D1B >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000058B90BFBE8D >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000002C5C85FDF46 >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000162E42FEFA2 >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000B17217F7D0 >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000058B90BFBE7 >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000002C5C85FDF3 >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000162E42FEF9 >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000B17217F7C >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000058B90BFBD >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000002C5C85FDE >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000162E42FEE >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000B17217F6 >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000058B90BFA >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000002C5C85FC >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000162E42FD >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000B17217E >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000058B90BE >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000002C5C85E >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000162E42E >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000B17216 >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000058B90A >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000002C5C84 >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000162E41 >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000B1720 >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000058B8F >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000002C5C7 >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000162E3 >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000B171 >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000058B8 >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000002C5B >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000162D >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000B16 >> 128; if (xSignifier & 0x800 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000058A >> 128; if (xSignifier & 0x400 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000002C4 >> 128; if (xSignifier & 0x200 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000161 >> 128; if (xSignifier & 0x100 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000000B0 >> 128; if (xSignifier & 0x80 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000057 >> 128; if (xSignifier & 0x40 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000002B >> 128; if (xSignifier & 0x20 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000015 >> 128; if (xSignifier & 0x10 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000000A >> 128; if (xSignifier & 0x8 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000004 >> 128; if (xSignifier & 0x4 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000001 >> 128; if (!xNegative) { resultSignifier = resultSignifier >> 15 & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = resultSignifier >> 15 & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> resultExponent - 16367; resultExponent = 0; } return bytes16 (uint128 (resultExponent << 112 | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp (bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2 (mul (x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit (uint256 x) private pure returns (uint256) { unchecked { require (x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }